Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Immunology ; 167(4): 528-543, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2019334

ABSTRACT

We evaluated the kinetics of antibody responses to Two years into the COVID-19 pandemic and 1 year after the start of vaccination rollout, the world faced a peak of cases associated with the highly contagious Omicron variant of concern (VoC) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) and nucleocapsid (N) antigens over five cross-sectional visits (January-November 2021), and the determinants of pre-booster immunoglobulin levels, in a prospective cohort of vaccinated primary health care workers in Catalonia, Spain. Antibodies against S antigens after a full primary vaccination course, mostly with BNT162b2, decreased steadily over time and were higher in pre-exposed (n = 247) than naïve (n = 200) individuals, but seropositivity was maintained at 100% (100% IgG, 95.5% IgA, 30.6% IgM) up to 319 days after the first dose. Antibody binding to variants of concern was highly maintained for IgG compared to wild type but significantly reduced for IgA and IgM, particularly for Beta and Gamma. Factors significantly associated with longer-term antibodies included age, sex, occupation, smoking, adverse reaction to vaccination, levels of pre-vaccination SARS-CoV-2 antibodies, interval between disease onset and vaccination, hospitalization, oxygen supply, post COVID and symptomatology. Earlier morning vaccination hours were associated with higher IgG responses in pre-exposed participants. Symptomatic breakthroughs occurred in 9/447 (2.01%) individuals, all among naïve (9/200, 4.5%) and generally boosted antibody responses. Additionally, an increase in IgA and/or IgM seropositivity to variants, and N seroconversion at later time points (6.54%), indicated asymptomatic breakthrough infections, even among pre-exposed. Seropositivity remained highly stable over almost a year after vaccination. However, gradually waning of anti-S IgGs that correlate with neutralizing activity, coupled to evidence of an increase in breakthrough infections during the Delta and Omicron predominance, provides a rationale for booster immunization.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Longitudinal Studies , Cross-Sectional Studies , BNT162 Vaccine , Pandemics , Prospective Studies , Vaccination , Antibodies, Viral , Primary Health Care , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Antibodies, Neutralizing
2.
BMC Med ; 19(1): 309, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1528684

ABSTRACT

BACKGROUND: Surveillance tools to estimate viral transmission dynamics in young populations are essential to guide recommendations for school opening and management during viral epidemics. Ideally, sensitive techniques are required to detect low viral load exposures among asymptomatic children. We aimed to estimate SARS-CoV-2 infection rates in children and adult populations in a school-like environment during the initial COVID-19 pandemic waves using an antibody-based field-deployable and non-invasive approach. METHODS: Saliva antibody conversion defined as ≥ 4-fold increase in IgM, IgA, and/or IgG levels to five SARS-CoV-2 antigens including spike and nucleocapsid constructs was evaluated in 1509 children and 396 adults by high-throughput Luminex assays in samples collected weekly in 22 summer schools and 2 pre-schools in 27 venues in Barcelona, Spain, from June 29th to July 31st, 2020. RESULTS: Saliva antibody conversion between two visits over a 5-week period was 3.22% (49/1518) or 2.36% if accounting for potentially cross-reactive antibodies, six times higher than the cumulative infection rate (0.53%) assessed by weekly saliva RT-PCR screening. IgG conversion was higher in adults (2.94%, 11/374) than children (1.31%, 15/1144) (p=0.035), IgG and IgA levels moderately increased with age, and antibodies were higher in females. Most antibody converters increased both IgG and IgA antibodies but some augmented either IgG or IgA, with a faster decay over time for IgA than IgG. Nucleocapsid rather than spike was the main antigen target. Anti-spike antibodies were significantly higher in individuals not reporting symptoms than symptomatic individuals, suggesting a protective role against COVID-19. CONCLUSION: Saliva antibody profiling including three isotypes and multiplexing antigens is a useful and user-friendlier tool for screening pediatric populations to detect low viral load exposures among children, particularly while they are not vaccinated and vulnerable to highly contagious variants, and to recommend public health policies during pandemics.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , Child , Child, Preschool , Female , Humans , Immunoglobulin G , Pandemics , Saliva , Schools , Spain/epidemiology , Spike Glycoprotein, Coronavirus
3.
Nat Commun ; 12(1): 4740, 2021 08 06.
Article in English | MEDLINE | ID: covidwho-1345557

ABSTRACT

Unraveling the long-term kinetics of antibodies to SARS-CoV-2 and the individual characteristics influencing it, including the impact of pre-existing antibodies to human coronaviruses causing common cold (HCoVs), is essential to understand protective immunity to COVID-19 and devise effective surveillance strategies. IgM, IgA and IgG levels against six SARS-CoV-2 antigens and the nucleocapsid antigen of the four HCoV (229E, NL63, OC43 and HKU1) were quantified by Luminex, and antibody neutralization capacity was assessed by flow cytometry, in a cohort of health care workers followed up to 7 months (N = 578). Seroprevalence increases over time from 13.5% (month 0) and 15.6% (month 1) to 16.4% (month 6). Levels of antibodies, including those with neutralizing capacity, are stable over time, except IgG to nucleocapsid antigen and IgM levels that wane. After the peak response, anti-spike antibody levels increase from ~150 days post-symptom onset in all individuals (73% for IgG), in the absence of any evidence of re-exposure. IgG and IgA to HCoV are significantly higher in asymptomatic than symptomatic seropositive individuals. Thus, pre-existing cross-reactive HCoVs antibodies could have a protective effect against SARS-CoV-2 infection and COVID-19 disease.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Coronavirus 229E, Human/immunology , Coronavirus NL63, Human/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , Common Cold/immunology , Common Cold/virology , Cross Protection/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood
4.
Vaccine ; 39(4): 687-698, 2021 01 22.
Article in English | MEDLINE | ID: covidwho-1023765

ABSTRACT

BACKGROUND: The evaluation of immune responses to RTS,S/AS01 has traditionally focused on immunoglobulin (Ig) G antibodies that are only moderately associated with protection. The role of other antibody isotypes that could also contribute to vaccine efficacy remains unclear. Here we investigated whether RTS,S/AS01E elicits antigen-specific serum IgA antibodies to the vaccine and other malaria antigens, and we explored their association with protection. METHODS: Ninety-five children (age 5-17 months old at first vaccination) from the RTS,S/AS01E phase 3 clinical trial who received 3 doses of RTS,S/AS01E or a comparator vaccine were selected for IgA quantification 1 month post primary immunization. Two sites with different malaria transmission intensities (MTI) and clinical malaria cases and controls, were included. Measurements of IgA against different constructs of the circumsporozoite protein (CSP) vaccine antigen and 16 vaccine-unrelated Plasmodium falciparum antigens were performed using a quantitative suspension array assay. RESULTS: RTS,S vaccination induced a 1.2 to 2-fold increase in levels of serum/plasma IgA antibodies to all CSP constructs, which was not observed upon immunization with a comparator vaccine. The IgA response against 13 out of 16 vaccine-unrelated P. falciparum antigens also increased after vaccination, and levels were higher in recipients of RTS,S than in comparators. IgA levels to malaria antigens before vaccination were more elevated in the high MTI than the low MTI site. No statistically significant association of IgA with protection was found in exploratory analyses. CONCLUSIONS: RTS,S/AS01E induces IgA responses in peripheral blood against CSP vaccine antigens and other P. falciparum vaccine-unrelated antigens, similar to what we previously showed for IgG responses. Collectively, data warrant further investigation of the potential contribution of vaccine-induced IgA responses to efficacy and any possible interplay, either synergistic or antagonistic, with protective IgG, as identifying mediators of protection by RTS,S/AS01E immunization is necessary for the design of improved second-generation vaccines. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: NCT008666191.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Adolescent , Antibodies, Protozoan , Antigens, Protozoan , Child , Child, Preschool , Humans , Immunoglobulin A , Infant , Malaria/prevention & control , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Protozoan Proteins
5.
J Infect Dis ; 223(1): 62-71, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1010364

ABSTRACT

BACKGROUND: At the COVID-19 spring 2020 pandemic peak in Spain, prevalence of SARS-CoV-2 infection in a cohort of 578 randomly selected health care workers (HCWs) from Hospital Clínic de Barcelona was 11.2%. METHODS: A follow-up survey 1 month later (April-May 2020) measured infection by rRT-PCR and IgM, IgA, and IgG to the receptor-binding domain of the spike protein by Luminex. Antibody kinetics, including IgG subclasses, was assessed until month 3. RESULTS: At month 1, the prevalence of infection measured by rRT-PCR and serology was 14.9% (84/565) and seroprevalence 14.5% (82/565). We found 25 (5%) new infections in 501 participants without previous evidence of infection. IgM, IgG, and IgA levels declined in 3 months (antibody decay rates 0.15 [95% CI, .11-.19], 0.66 [95% CI, .54-.82], and 0.12 [95% CI, .09-.16], respectively), and 68.33% of HCWs had seroreverted for IgM, 3.08% for IgG, and 24.29% for IgA. The most frequent subclass responses were IgG1 (highest levels) and IgG2, followed by IgG3, and only IgA1 but no IgA2 was detected. CONCLUSIONS: Continuous and improved surveillance of SARS-CoV-2 infections in HCWs remains critical, particularly in high-risk groups. The observed fast decay of IgA and IgM levels has implications for seroprevalence studies using these isotypes.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Health Personnel , Adult , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Kinetics , Male , Middle Aged , Seroconversion , Seroepidemiologic Studies , Spain/epidemiology
6.
Nat Commun ; 11(1): 3500, 2020 07 08.
Article in English | MEDLINE | ID: covidwho-635939

ABSTRACT

Health care workers (HCW) are a high-risk population to acquire SARS-CoV-2 infection from patients or other fellow HCW. This study aims at estimating the seroprevalence against SARS-CoV-2 in a random sample of HCW from a large hospital in Spain. Of the 578 participants recruited from 28 March to 9 April 2020, 54 (9.3%, 95% CI: 7.1-12.0) were seropositive for IgM and/or IgG and/or IgA against SARS-CoV-2. The cumulative prevalence of SARS-CoV-2 infection (presence of antibodies or past or current positive rRT-PCR) was 11.2% (65/578, 95% CI: 8.8-14.1). Among those with evidence of past or current infection, 40.0% (26/65) had not been previously diagnosed with COVID-19. Here we report a relatively low seroprevalence of antibodies among HCW at the peak of the COVID-19 epidemic in Spain. A large proportion of HCW with past or present infection had not been previously diagnosed with COVID-19, which calls for active periodic rRT-PCR testing in hospital settings.


Subject(s)
Antibodies, Viral/blood , Betacoronavirus/immunology , Coronavirus Infections/epidemiology , Health Personnel , Pneumonia, Viral/epidemiology , Adult , Asymptomatic Infections/epidemiology , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/diagnosis , Female , Humans , Male , Middle Aged , Occupational Health , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , RNA, Viral/blood , Risk Factors , SARS-CoV-2 , Seroepidemiologic Studies , Spain/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL